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We carried out a molecular-dynamics �MD� study of the self-diffusion tensor of a Lennard-Jones-type fluid,
confined in a slit pore with attractive walls. We developed Bayesian equations, which modify the virtual layer
sampling method proposed by Liu, Harder, and Berne �LHB� �P. Liu, E. Harder, and B. J. Berne, J. Phys.
Chem. B 108, 6595 �2004��. Additionally, we obtained an analytical solution for the corresponding nonhomo-
geneous Langevin equation. The expressions found for the mean-squared displacement in the layers contain
naturally a modification due to the mean force in the transverse component in terms of the anisotropic diffusion
constants and mean exit time. Instead of running a time consuming dual MD-Langevin simulation dynamics,
as proposed by LHB, our expression was used to fit the MD data in the entire survival time interval not only
for the parallel but also for the perpendicular direction. The only fitting parameter was the diffusion constant
in each layer.
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I. INTRODUCTION

With the advent of nanoscience and its technological im-
plications, there has been a particular interest in getting a
deeper insight on the dynamics of fluids confined in nano-
structures. The behavior of the transverse diffusion constant
of the fluid, under the geometrical constraint imposed by the
confinement, has being studied in a number of ways.
Statistical-mechanics theories, such as mode coupling analy-
sis �2,3�, memory function approach �4�, lattice Boltzmann
method �5�, replica Ornstein-Zernike equation �6�, and mo-
lecular modeling �1,7–11�, have been used. Also effective
transverse diffusion constants have been calculated from the
mean first passage times, using a combination of Smolu-
chowski equation and the hypernetted-chain theory �12,13�.
The technical difficulties of getting reliable experimental
data enhance the interest on theoretical calculations. This
work deals with the molecular-dynamics �MD� calculation of
the anisotropic diffusion constant of a Lennard-Jones �LJ�
fluid, confined between two attractive infinite planar sheets,
separated at a given distance. Unlike the free diffusion case,
here, the diffusion constant is position dependent, due to the
potential exerted by the walls on the fluid. Fluid particles
cannot span all phase space as the free diffusion particles do
and, therefore, Kubo relation is no longer valid. In spite of
this, one can still resort to MD modeling as a tool to predict
diffusion transport properties, if the anisotropy of the system
is carefully considered. In the analysis of the liquid-vapor
water interface, Liu, Harder, and Berne �LHB� �1� introduced
a dual simulation algorithm to overcome this difficulty. They
matched dynamical properties, calculated with MD, with
those determined by a trial-and-error Langevin-like dynam-
ics, in which the diffusion constant was the ad hoc parameter
of the calculation. Here, we propose an alternative direct
method, combining the MD simulation with analytical solu-

tion of the stochastic differential equations of the problem, to
bypass the numerical Langevin dynamics �LD� proposed by
Liu et al. As we will show later in this paper, the method is
simple, fast, and reliable in predicting position-dependent
diffusion constants.

This paper is organized as follows. In Sec. II, we describe
the evaluation of dynamical quantities, such as the mean-
squared displacement �MSD�, within virtual layers of the an-
isotropic fluid. In Sec. III, we decouple the Langevin equa-
tion to propose a set of stochastic differential equations,
which incorporates in a natural way the anisotropy of the
medium. We derive analytical formulas for the parallel and
perpendicular MSD to be used as fitting functions of the
numerical MD MSD data. We show that our more general
equations reduce to LHB equations when the diffusion tensor
is diagonal and show the correct time limiting behavior in
the presence of the external force induced by the pore walls.
Finally, in Sec. IV, we report the results for the position-
dependent diffusion constants, for a specific case study of a
dense interacting fluid.

II. MOLECULAR-DYNAMICS EVALUATION
OF MSD IN VIRTUAL LAYERS

In this section, we revisit the work of Liu et al. �LHB� �1�
for the evaluation of the MSD for molecules in a virtual slit.
As a case study, we used a system very similar to that studied
before by Thomas and McGaughey �10�. It is a fluid confined
in a pore, which consists of two infinite smeared molecular
layers separated by a distance H. The fluid is composed of
Lennard-Jones argonlike atoms of diameter � and mass m,
free to move in the x and y directions, parallel to the planes,
but restricted to diffuse in the domain �0,H�, along the z
direction. We follow a procedure similar to that of LHB in
the sense that we assume the friction coefficient does not
vary appreciably, for a given layer of width L, located be-
tween the positions z=za and z=zb=za+L, parallel to the sur-
face.*Corresponding author; wilmer@ula.ve
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Formally, the MSD in the generic direction q, either x, y,
or z, is given by

��q�t� − q0�2� =� dr�� dr�0�q�t� − q0�2P�r�,t,r�0� , �1�

where P�r� , t ,r�0� is the joint probability of finding a particle
at position r�0 at time t=0 and then at position r� at time t.
Since the movement in the z direction is assumed to be in-
dependent of the movement in the x and y directions, the
joint probability P�r� , t ,r�0� can be approximated as a coupled
superposition,

P�r�,t,r�0� = P�x,t,x0;z0�P�y,t,y0;z0�P�z,t,z0� , �2�

where the presence of the variable z0 in P�q , t ,q0 ;z0�, for q
= �x ,y	 remarks the fact that the probability of displacement
on q directions depends on the initial position in z since it is
a functional of the local density, which in turn is a function
of z. Keeping this in mind, we can further rewrite Eq. �2� in
terms of Bayesian conditional probabilities

P�r�,t,r�0� = P�x,t
x0;z0�P�y,t
y0;z0�P�z,t
z0�g�z0� , �3�

where, for example, P�x , t 
x0 ;z0� is the conditional probabil-
ity that the particle is located at x at time t, given that it was
at x0 at time t=0, in a layer containing z0. g�z0� is the prob-
ability for a particle to be at position z0 at time t=0. It can be
obtained directly from the local particle density ��z�. Substi-
tuting Eq. �3� into Eq. �1� and taking into account the inde-
pendence of the integration variables, we find that the MSD
along x, y, and z for particles within a virtual layer of width
L, are given by

���x�2�L = �
za

zb

dz�
za

zb

dz0P�z,t
z0�g�z0�

���
−�

�

dx�
−�

�

dx0��x�2P�x,t
x0;z0��Ny�t;z0� ,

���y�2�L = �
za

zb

dz�
za

zb

dz0P�z,t
z0�g�z0�

���
−�

�

dy�
−�

�

dy0��y�2P�y,t
y0;z0��Nx�t;z0� ,

���z�2�L = �
za

zb

dz�
za

zb

dz0P�z,t
z0�g�z0���z�2Nx�t;z0�Ny�t;z0� ,

�4�

where �q=q�t�−q0, and the factors Nq�t ;z0� for x and y are

Nq�t;z0� = �
−�

�

dq�
−�

�

dq0P�q,t
q0;z0� . �5�

Since these factors correspond to the normalization of the
probability in the x and y directions, they are set equal to one
to get

���x�2�L = �
za

zb

dz�
za

zb

dz0P�z,t
z0�g�z0����x�2	 , �6�

���y�2�L = �
za

zb

dz�
za

zb

dz0P�z,t
z0�g�z0����y�2	 , �7�

���z�2�L = �
za

zb

dz�
za

zb

dz0P�z,t
z0�g�z0���z�2, �8�

where

��q�2 = �
−�

�

dq�
−�

�

dq0�q�t� − q0�2P�q,t
q0;z0� , �9�

for q= �x ,y	. The result in Eqs. �6�–�8� is physically sound. It
states that the MSD in the z direction is obtained averaging
�z�t�−z0�2 for molecules that remain during the time interval
t in the layer, irrespective of its position in the x and y di-
rections. While the MSD in the x and y directions are ob-
tained averaging �x�t�−x0�2 and �y�t�−y0�2 over all values of
x and y, subjected to the condition that the particles remain
in the layer �za ,zb� in the z direction. We do not write Eqs.
�6� and �7� as 2P�t�Dqqt for x and y, as in Eq. �13� of Ref.
�1�, because there is a small dependence of the terms in
braces on the position z0 and, above all, because—as we
shall discuss in the next section—those terms converge to the
bulk value 2D0t only for a free diffusing Brownian particle
in an infinitely large layer, at an infinite time. Particles es-
cape from finite layers if the time becomes too large.

To numerically evaluate these quantities in the MD simu-
lation, we chose a simple model, similar to that used by
Thomas and McGaughey �10�, i.e., a LJ 12–6 system, de-
scribing argon atoms at a given temperature and density, con-
fined by attractive LJ parallel walls �14–17�. We have carried
out MD simulations for a fluid with bulk-reduced density
��=0.69, at a reduced temperature T�=kBT /�FF=0.75. For
computational simplicity and without loss of generality, we
have used a LJ 9–3 wall-fluid potential, corresponding to a
smoothed wall interacting with a LJ fluid particle �14–17�.
This potential has been used in the description of phase be-
havior and dynamics of fluids and colloidal suspensions in
nanopores �18,19�. It also mimics the hydrophobic interac-
tion of a hydrocarbon wall with the oxygen atom of a water
molecule �16,17�.

The method presented in this work is independent of the
system under study, but the virtual layer treatment is condi-
tioned by the magnitude of �WF since it determines the local-
density profiles and, therefore, the magnitude of the mean
force F�z� acting on the diffusing particles. For sampling
virtual layers close to a very attractive wall, the fluid be-
comes highly nonhomogeneous. This is illustrated in Fig. 1,
where we plot the reduced local density and mean force, as a
function of the position z, for a wall with �WF=1.0kBT. The
set of sampling virtual layers, of width 0.5�, beginning at
z=0.5�, is also shown. Here the continuous line is ���z�
=��z��3, the reduced local density of particles; the dashed
line is the reduced mean force F��z�=��F�z�, due to the
attractive walls, acting on a fluid particle located at z. It is
obtained as the gradient of the potential of mean force, de-
termined from the local density, as �F�z�=−d�W�z� /dz
=d ln ��z� /dz. For the temperature and density of the fluid
and the characteristics of the interactions chosen �10�, the
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mean force is a strongly oscillating function of the position
with respect to the walls.

Although not shown, we ran MD simulations for different
values of the LJ 9–3 �WF. The so-called more-wetting value
used by Thomas and McGaughey �10�, �WF=3.16kBT, gives
sharp local-density peaks next to the surface, close to a sol-
idlike behavior, with very large values of F�z�. While the
less-wetting value �WF=0.45kBT gives a low varying density
profile showing—instead—a tendency to drying �20�. Since
we are interested in the study of the effect of confinement on
the anisotropic diffusion �12,13�, we need to ensure a good
phase behavior even for confined fluids in the nanopore re-
gime �20�. Hence, to test the technique, we have chosen an
intermediate �WF=1.0kBT value, between the less and more-
wetting conditions, which corresponds to a typical liquid
profile next to a solid surface, as shown in Fig. 1.

We proceed as follows. After thermal equilibration, the
simulation time is denoted by s. The total simulation time is
partitioned in J blocks of length nmax�s, where nmax is the
maximum number of time steps �s in each block. Let us then
consider the set of particles that stay in a layer of width L,
i.e., z�t�� �za ,za+L�, during the time interval t, between the
simulation time s0 and s=s0+ t. The initial number of par-
ticles in the layer at s=s0 is N�0�=N�s0�, and the number of
particles in the set, still in the layer after the interval t, is
N�t�=N�s0+ t�. If the MD simulation time step is �s, the time
interval after n steps is t=n�s. The maximum time interval
used to evaluate quantities inside the layers was tmax
=nmax�s. After nmax steps, the algorithm is reinitiated to
measure the dynamics in the layer, setting s0=s again. This
layer sampling is repeated J times. We denote the number of
particles in the set that stay in a layer in the jth layer sam-
pling or repetition as Nj�s�.

The MSD in the jth layer sampling is evaluated summing
over all the Nj�t� particles in the set

��q�t� − q�0��2� j =
1

Nj�t�


i

Nj�t�

�qi�t� − qi�0��2. �10�

The average MSD is

��q�t� − q�0��2� =
1

J


j

J

��q�t� − q�0��2� j . �11�

Notice that, according to the result in Eqs. �6�–�8�, this ex-
pression holds not only for x and y directions but also for the
perpendicular z direction.

In Fig. 2, we show the effect of the layers width L on
the MSDs, as a function of the MD reduced time, t�

=��FF /m�2t. The labels indicate the width L /�=2.0, 1.0,
0.75, 0.50, and 0.25, for the z perpendicular direction �con-
tinuous lines� and L /�=2.0 and 0.25, for the x and y parallel
directions �dashed lines�. The data shown correspond to lay-
ers in the bulk, in z regions away from the walls, at z=20�.
We can see that the parallel x and y mean-square displace-
ments are identical and they are fairly independent of the
layer width L. For low values of L, the perpendicular MSD
differs appreciable from the parallel quantities. But, since we
are in the bulk region, as L increases it tends to the parallel
value. It should be noted that for L as high as 2�, the z MSD
becomes rapidly linear with time. However, for narrower
layers, say L=0.25�, the perpendicular MSD reaches a satu-
ration or plateau value for large times. This is the expected
result since a particle in a layer cannot have a net displace-
ment larger than the layer width; therefore, the MSDs are
bounded, i.e., MSD≪L2. In other words, most particles es-
cape the layer before the MSD reaches its linear regime.

A useful quantity, when studying particles moving in a
virtual absorbing narrow layer, is the so-called survival prob-
ability. It measures the average probability that after a time
interval t a particle still remains inside the layer. In the dif-
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FIG. 1. Molecular-dynamics nonhomogeneous functions in the
neighborhood of the walls, as a function of the reduced distance
z /�. For H=40� , ��=0.69, T�=0.75, and �WF=1.0kBT. The solid
line is the reduced local particle density ���z�=��z��3 scaled by a
factor of 10; the dashed line is the reduced mean force F��z�
=��F�z�. The vertical lines denote the boundaries of a set of virtual
layers of width L=0.5� beginning at za=0.5�. The squares � de-
note the reduced force at the boundaries.
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FIG. 2. Effect of the layer width L on the MD mean-square
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the same as Fig. 1.
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fusion domain za	z
za+L, the survival probability P�t ,za�
is defined as

P�t,za� = �
za

za+L

dz�
za

za+L

dz0P�z,t
z0�g�z0� . �12�

In our MD notation, P�t ,za� is obtained by averaging Pj�t�
=Nj�t� /Nj�0� over the J repetitions

P�t,za� =
1

J

j=1

J

Pj�t� =
1

J

j=1

J
Nj�t�
Nj�0�

. �13�

In Fig. 3, we show the effect of the layer width L on survival
probability P�t ,za�, as a function of time, in z regions at za
=20�. Labels and conditions are the same as those of Fig. 1.
The dot points are the MD simulation results, according to
Eq. �13�. The solid lines are the numerical fit with the ex-
pression

P�t,za� = e−t/��za�, �14�

where ��za� is a za-dependent relaxation time used as the only
fitting constant, for each L. We shall refer to �MD�za� as the
MD mean exit time. The fit is good, even for layers as narrow
as 0.25�. The rapidly decreasing survival probability for nar-
row layers as time increases is in agreement with the results
of Fig. 2.

It should also be noted that there is an important differ-
ence among our expressions and those proposed by Liu et al.
�LHB� �1� since the normalization factor in the denominator
in LHB is Nj�0� and not Nj�t�, as in our Eq. �10�. Comparing
with Eq. �14� of LHB �1�, we can write in our notation,

��q�t� − q�0��2� j
LHB =

1

Nj�0� 
i

Nj�t�

�qi�t� − qi�0��2. �15�

Then Eq. �10� can be written as

��q�t� − q�0��2� j =
1

Pj�t�
��q�s� − q�0��2� j

LHB, �16�

and Eq. �11� can be rewritten as

��q�t� − q�0��2� =
1

J

j=1

J
��q�t� − q�0��2� j

LHB

Pj�t�
. �17�

When applied for the parallel directions x and y, this ex-
pression is in agreement with the expression used by Thomas
and McGaughey and others �10,11�.

In order to evaluate the nonhomogeneous behavior of the
diffusion process, in the next section, we derive an alterna-
tive analytical procedure to Liu et al.’s �1� dual simulation
approach. We calculate the elements of the friction tensor as
a function of the distance to the wall. In Sec. IV, we shall use
the obtained analytical MSD expression from the stochastic
differential equation of the system, instead of solving it nu-
merically, to consistently determine from a MD simulation
the friction coefficient as a function of the distance to the
surface.

III. ANALYTICAL LANGEVIN EQUATION APPROACH

For the system discussed in the previous section, the an-
isotropic Langevin-like equation can be written as

dr�
dt

= v��t� ,

m
dv�
dt

= − � · v� + F� ext + ���t� . �18�

It describes the dynamics of a fluid particle of mass m lo-
cated at position r� with velocity v� , in the presence of an
external force F� ext. � is the friction tensor of the fluid and
���t� is the usual �-correlated-zero-mean white noise resulting
from the collisions with the rest of the fluid. Without loss of
generality, the Sutherland-Einstein relationship will be in-
voked in the form �=kBTD−1 to write down the friction
tensor � in terms of the diffusion constant matrix D. Here,
kB and T are the Boltzmann constant and temperature, re-
spectively.

The force is calculated from the potential of mean force
due to the infinite walls described before and shown in Fig. 1
for a large pore with H=40�, so it has only a z component,
namely, F�z�. The virtual layer formalism of Liu et al. �1�
assumes that sampling layers parallel to the interface are suf-
ficiently thin, so that the friction coefficients in every direc-
tion are constant within them. But also, layers must be thick
enough to contain an appropriate number of molecules. Thus,
particles moving in the x, y and z directions, in a layer lo-
cated at a given za, feel an approximately constant external
force, let us say F�za�. The friction coefficient tensor � and
the diffusion matrix D are then assumed to be constant
within the layer. It is important to stress out that the parallel
movements are also affected by the proximity of particles to
the surface since they depend on the local particle density,
which is not homogeneous.
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FIG. 3. Effect of the layer width L on the survival probability
P�t ,za�, as a function of the reduced time t�, in z regions at za

=20�, corresponding to the bulk. Labels and conditions are the
same as those of Fig. 1. The dot points are the MD simulation
results. The solid lines are the numerical fit with the expression
P�t ,za�=e−t/��za�.
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We assume the following premises in order to establish
the components of matrix D. First, the perpendicular compo-
nent Dzz denoted by D� differs from the parallel components
Dxx and Dyy denoted by D�. These parallel diagonal elements
are equal, while the off-diagonal elements Dxy and Dyx are
set equal to zero since the dynamics of the particles along x
and y directions are undistinguishable and independent of
each other. In addition, the perpendicular movement is unaf-
fected by the parallel diffusion; thus, the nondiagonal ele-
ments Dzx and Dzy are also set equal to zero. The presence of
a potential of mean force along z induces a local change in
the particle density and modifies the dynamics not only in
the z direction but also in the x and y directions; therefore,
both D� and D� are functions of z. We believe that this effect
could also give rise to small but nonzero nondiagonal Dxz
=Dyz elements. Such generalization merits further investiga-
tion. However, within the scope of this work and for simplic-
ity, we shall consider a diagonal friction matrix, as in previ-
ous work �1,10,11�. If we let q and vq be the coordinate and
velocity, respectively, of a given diffusing particle, Eqs. �18�
then reduce to

dvq

dt
+ qvq =

1

m
�F�q� + ��t�� , �19�

where q=�qq /m=kBT /Dqqm with Dqq and F�q� being one
of the diagonal elements of the diffusion matrix and the ex-
ternal force in the q direction, respectively. This can be
solved directly as

vq�t� = vq�0�e−qt +
1

m
e−qt�

0

t

�F�q� + ��s��eqsds . �20�

To complement the MD results of previous section, the next
step is to determine the analytical MSD from the stochastic
differential equation of the systems �18� in terms of the dif-
fusion constants. The whole idea is to rewrite the Langevin
equation as a differential equation for the MSD. So, let �q
=q�t�−q�0� and use the fact that �q�d�q /dt�
= �1 /2�d��q2� /dt and �q�dvq /dt�= �1 /2��d2��q2� /dt2�−vq

2,
to rewrite the original Langevin equation as

d2�q2

dt2 + q
d�q2

dt
=

2�q

m
�F�q� + ��t�� + 2vq

2. �21�

Since ��t� is a zero-mean delta-correlated white noise, the
above equation at the average yields

d2��q2�L

dt2 + q
d��q2�L

dt
=

2

m
F�q���q�L + 2�vq

2�t��L, �22�

where the subscript L reminds that the averages should be
taken on a layer of width L in the z direction, where the force
is assumed, for simplicity, to be a constant. L should be
chosen such that it is large enough for avoiding an excessive
escape of molecules from the layer but small enough for
F�q� and q to be approximately invariant. It is also assumed
that the noise averages out to zero in the layer, i.e., ���s=0.
In order to get analytical results, we will assume that inside
the layer the force is constant along the perpendicular direc-
tion. If the external force vanishes for the parallel x and y

components and D/=0, the positions and velocity of the par-
ticles are unbounded. Thus, Eq. �22� reduces to the well-
known free diffusion result.

The initial value problem posed in Eq. �22�, i.e.,

��q2�0��L = �d��q2�t��L

dt
�

t=0
= 0, �23�

requires the knowledge of the averages ��q�L and �vq
2�t��L.

They can be straightforwardly found from the Langevin
equation through the following approximations. First, the
movements in the perpendicular and parallel directions are
assumed to be independent. Thus, if z denotes the perpen-
dicular coordinate let us define P�z ,v , t ;z0 ,v0�
= P�z , t ;z0�P�v , t ;v0� as the joint probability of finding a par-
ticle in the layer with position z and velocity v at t given that
their values were z0 and v0 at t0, respectively. Since the ve-
locities of the particles are unbounded, we find that for z
spanning the interval za	z
zb, the average �vq

2�t��L is given
by

�vq
2�t��L = �

za

zb

dz�
za

zb

dz0�
−�

�

dvq�
−�

�

dv0vq
2�t�P�z,vq,t;v0,z0� ,

=P�t,za�vq
2�t� , �24�

where

vq
2�t� = �

−�

�

dv0�
−�

�

dvqvq
2P�vq,t;v0� , �25�

and P�t ,za� is the so-called survival probability inside the
layer, defined before in Eq. �12�. Here we assumed that the
velocity probability distribution is independent of positions.
In Eq. �24�, vq

2�t� is the mean-square velocity of a particle
diffusing in a fluid without spatial constraints and subjected
to an external force F�z�. Similarly, the average velocity can
be written as

�vq�L = P�t,za�vq�t� . �26�

By integration, we get the average displacement inside the
layer

��q�t��L = �
0

t

dsP�s,za�vq�s� . �27�

The average vq�t� is obtained analytically integrating Eq.
�20�,

vq�t� = v0e−qt + vF
q�1 − e−qt� . �28�

Here, we let v0=vq�0�=�2kBT /m� and defined a drift veloc-
ity vF

q =F�q� /mq in our problem vF
x =vF

y =0.
Now, in order to get explicit expressions for �vq

2�t��L and
��q�t��L, we ought to know the time dependence of P�t ,za�
and vq�t�. Figure 3 shows the dependence of the MD simu-
lation survival probability, in a layer located at z=za, as a
function of time. A good fit is obtained with the exponential
expression exp�−t /�MD�, even for a layer width as narrow a
L=0.25�. This is in agreement with previous observations
�1,10�, which indicate that the survival probability for par-
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ticles to remain in the layer can be approximated, with a high
degree of accuracy, by an exponential decay, with a decay
constant given by the inverse of a relaxation time � �Eq.
�14��. We then substitute this expression into those for the
dispersion of vq�t� in the layer �Eq. �24�� and for the particle
layer average displacement �q�t� given by Eq. �27�.

Substituting Eq. �28� into Eq. �27� gives ��q�t��L in terms
of the parameter �=��za�

��q�t��L = vF��1 − e−t/�� + �v0 − vF��
�1 − e−�1+q��t/��

1 + q�
.

�29�

Now, we square Eq. �20�, take the particle average using
���s���t��=�2��t−s�, and substitute it back into Eq. �24� to
finally get

�vq
2�t��L = vq

2�t�e−t/�, �30�

with

vq
2�t� =

kBT

m
+ 2vF�v0 − vF�e−qt�1 − e−qt� . �31�

To get this result, the strength of the noise �2 was taken as

�2 = 2q�kBT/m − vF
2� , �32�

by requiring vq
2�t� to be equal to kBT /m for large t, in order to

satisfy the fluctuation dissipation theorem. Since in the par-
allel directions F�x�=F�y�=0, there is no restriction on the
time expended by the particles to move in those coordinates.
Therefore, �x=�y→�, ��x�t��L= ��y�t��L=0, and �vx

2�t��L
= �vy

2�t��L=kBT /m.
The final step is to solve Eq. �22� with the use of Eqs.

�29�–�31�. After a lengthy but straightforward algebra, it can
be found that the MSD in the direction q is given as �21–24�

���q�t��2� = fq�t� , �33�

where, for the parallel directions q=x ,y,

fq�t� = 2Dqqt��q,t� , �34�

and

��q,t� = 1 +
1

qt
�e−qt − 1� . �35�

This expression is identical to that found for a Brownian
particle in the bulk, except that here x=y are functions of
the position z, namely, q=q�z�=kBT / �mDqq�z��.

In the presence of an external force F�z�, assumed to be
constant within the layer, the perpendicular z component fz�t�
has two additional terms

fz�t� = fz
B�t� +

mvF
2

kBT
R�t� +

mvF�v0 − vF�
kBT

S�t� , �36�

where

fz
B�t� = 2Dzzt

a

1 − a
���1� − ��a�� , �37�

R�t� = 2Dzzt
a

1 − a
���a� − a��1�� , �38�

S�t� = 2Dzzt
a

1 + a
��1 − a���a� + �2 + a���1 + a�

− 2��1 + 2a�	 . �39�

Here, we have used the notation a=z�, and

���� = ���,t/�� = 1 +
�

�t
�e−�t/� − 1� , �40�

with � having the values 1, a, �1+a�, or �1+2a�. The func-
tion ���� is well behaved and characteristic of the Langevin
process. It goes asymptotically to 1 for large times, and as
�t /2 for small times. Expanding Eqs. �34� and �36� for short
times, one gets the well-known ballistic term for x, y, and z
to order O�t2�,

lim
t→0

fq�t� = Dqqqt2 =
kBT

m
t2. �41�

The long-time limit for x and y is the standard free diffusion
limit

lim
t→�

fq�t� = 2Dqqt . �42�

It should be noticed that for large virtual layers width L, the
mean exit time � also becomes large. Therefore, in the bulk
or in the absence of an external force, namely, when vF=0,
fz�t� reduces fz

B�t�, which gives the standard result of a ho-
mogeneous system of Brownian particles, namely, fz

B�t�
= fx

B�t�= fy
B�t�, given by Eq. �34�. This can be obtained from

Eq. �37� as �→�. However, for finite L and �, fz
B�t� is the

Brownian contribution for the diffusion constrained to the
sampling layer. In that case, even in the absence of an exter-
nal force, the sampled particle displacements are bounded,
and the large time limit of the MSD in the z direction reaches
a plateau

lim
t→�

fz
B�t� = 2Dzz� . �43�

The last two terms in Eq. �36� account for the effect of the
external force F�z� on the MSD and could give a nonsaturat-
ing curve for large times.

Equation �42� is the relationship commonly used to obtain
the diffusion constant in homogeneous fluids. It is also used
in the LHB approach to obtain the nonhomogeneous diffu-
sion constants in the parallel directions. However, as we shall
discuss later, the complete Eqs. �34� and �36� match very
well the MSD obtained from MD for the entire time interval
of the layer sampling. In principle, given the MD value of
F�z�, they can be used to fit numerically MD-MSD data in
order to find the diffusion constant at the layer under consid-
eration.

IV. ANISOTROPIC DIFFUSION CONSTANT

In this section, we put together the fundamental results of
Sec. II, for the molecular-dynamics simulation in a virtual
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layer, with the corresponding analytical solution of the
Langevin equation obtained in the previous section. This
provides a method to evaluate the anisotropic diffusion con-
stant. As described in Sec. II, we studied a dense Lennard-
Jones fluid ���=0.69� at low reduced temperature �T�

=kBT /�FF=0.75� next to a highly interacting 9–3 LJ smeared
wall �kBT /�FF=1.0� �14,17�. As pointed out in the work of
Thomas and McGaughey �10�, the width L of the layers has
to be carefully chosen. It has to be small enough to have a
reasonably constant force value within it but large enough to
keep a sufficient number of molecules in the layer in order to
preserve the statistical nature of the MD measurements. As
illustrated in Fig. 2, a reasonable compromise is found at L
=0.5�. For large pore width H and distances away from the
wall, the force vanishes, so we reach the bulk. The predicted
D0 for the bulk fluid, for z=20� obtained from Fig. 2, agrees
with the reported value for this fluid of 4�10−9 m2 /s. For a
layer closer to the walls, the x and y MSDs are still identical,
but that for z differs substantially, due to the strongly force
F�z� acting on the particles in that direction.

As can be seen in Fig. 1, the local-density profile ��z�,
and, therefore, the mean external force F�z� present strong
oscillations next to the wall. As discussed above, we have
chosen these rather demanding conditions since they corre-
spond to those previously used in a numerical dual simula-
tion evaluation of the diffusion constant �10�. The main
drawback is that the local external force within each sam-
pling virtual layer is far from being a constant. This is true
even for the smaller layer width L=0.5� used in this work.
In fact, the smooth curve for the force shown in Fig. 8 of
Ref. �10� ignores the force fine structure; it is represented in
our Fig. 1 simply joining the sampling points at the left
boundary of each layer denoted by � in the figure. To over-
come this difficulty, we propose the use of a coarse-grained
average force in each layer or simply a spatial average in the
layer, i.e.,

F̄�za� �
1

L
�

za

za+L

FMD���d� , �44�

where FMD���=kBTd ln �MD��� /d�. To take into account the
actual fine structure of the interfacial fluid, in an approxi-
mated way, we propose the use of different windows in z
space, by shifting the position of the layers. As an example,
this is illustrated in the same figure by the open circle points
�, for a layer beginning at za=1.325�. Repeating the MD
simulations for just a few shifts is enough to reproduce ap-
proximately the force profile.

Nevertheless, for layers too close to the walls, the value of
L needs to be decreased, in order to keep the constant F�z�
requirement reasonably valid. To avoid the exit of all par-
ticles initially in the layer, we tested the increase in the num-
ber of particles in the system from N=1296 to N=2916.
Even though it modifies the MSD behavior for the long-time
region, it increases too much the computational times. So we
chose a compromise by using L=0.5� and N=1296.

The evaluation of a phenomenological quantity, such as
the self-diffusion constant Dqq, must be carried out by fitting
the MSD simulation MD data with the analytical expression

obtained from the solution of the phenomenological Lange-
vin equation �Eqs. �34� and �36��. The fit for the MD parallel
MSD data ���x�t��2� and ���y�t��2� with Eq. �34� is shown in
Fig. 4, for several values of z. The fit is good and shows the
expected linear 2Dqq�za�t limit for large times.

An additional difficulty appears for the perpendicular dif-
fusion. It was proven numerically by Burschka and Titulaer
�25� and Harris �26� and theoretically by Razi et al. �27� that
the conditional probability obtained as the stationary solution
of the Fokker-Planck equation, associated to the Langevin
equation for a system with absorbing boundaries conditions,
fails to vanish at those boundaries. This inconsistency is
handled in the literature shifting the boundaries away. In fact,
Liu et al. �1� overcame this difficulty by running the dual
numerical LD and MD, at different values of L, until the
survival probabilities from both simulations matched. For the
same L, the Langevin survival probability, as given by Eq.
�14�, is then known to be lower than the corresponding MD
survival probability evaluated from Eq. �13�. This means that
for a fixed layer width, MD particles reach the boundary
faster than those of LD. In other words, the Langevin dy-
namics mean exit time �LD, for a given sampling layer width,
is lower than the corresponding molecular-dynamics mean
exit time �MD. This is a systematic error found even for vir-
tual absorbing layers located at the bulk. Additionally, we
found that the �MD’s were very closely proportional to L.
Since the aim of this research is to predict diffusion constants
from MD MSD liquid layer measurements of a given width
and there is no known relation between the mean exit time
and the diffusion constant under this circumstance, we there-
fore appeal to the simplest ansatz of fixing the layer width
and shifting the mean exit time instead.

We start by evaluating the MD survival probability
P�t ,za� for the bulk fluid from Eq. �13� and the MD free
diffusion bulk constant D0. The corresponding bulk Lange-
vin mean exit time �LD

0 is then evaluated using Eq. �36� or
Eq. �43�. We then conjecture that the time shift found for the
bulk fluid ��=�MD

0 −�LD
0 is approximately the same for the

anisotropic fluid next to the wall, namely,
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FIG. 4. Curve fit of MD parallel mean-square displacement with
fitting MSD analytical expression fx�t� given by Eq. �34�, as a func-
tion of time. Curves are for za /�=1.5, 2.35, 3.0, and 20.0, as
labeled.
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� = �LD�za� = �MD�za� − �� . �45�

Figure 5 shows the MD numerical data for the perpen-
dicular MSD and the best fit with fz�za�, for several values of
za using Eq. �36� and anzatz �45�. The fitting parameter
Dzz�za� is shown in Fig. 6 along with the estimated values of

�LD�za� and F̄�za� we used. We can see in Fig. 5 that for a
virtual layer located at za=20�, the fit is good and shows that
the MSD reaches an asymptotic value 2Dzz� for large times.
We can see that for large times, the MD data becomes noisy
since most of the particles initially in the layer have already
escaped. For nanometric distances to the attractive walls, the
fit is still good but the effect of the drift velocity components

originated by the local force becomes important. As shown
in Fig. 5, a good fitting is also obtained for layers as closed
as 1.5� to the wall, but the nonconstancy of the force within
the layer becomes quite apparent.

Finally, in Fig. 6, the calculated nonhomogeneous diffu-
sion constants Dqq�za� are shown as a function of the location
from the pore wall of the left boundary of the layers za /�.
Since Dxx�za� is essentially identical to Dyy�za�, we only show
their mean. Close to the wall, the parallel components
Dxx�za�=Dyy�za� change just a little. However, the transverse
Dzz�za� shows strong oscillations. Since we are looking at a
large pore of H=40�, at the center of the pore za /�=20, all
the diffusion tensor components converge correctly to the
bulk value D0. This limit is already attained at za /�=5 in
Fig. 6. The local diffusion constant profile Dzz�za� follows
inversely the shape of the local particle density ��z�, that is,
a maximum in density gives a minimum in the perpendicular
diffusion constant.

Also shown in Fig. 6 are the values of the LD reduced
mean exit times ���za�=�LD

� �za� obtained from curve fitting of
the survival probability as a function of time with Eqs. �14�
and �45�. �MD�z� and therefore �LD�z� follow qualitatively
very well the z dependence of the external force F�z� shown
in Fig. 1. For attractive wall mean forces ��za�
�bulk and
P�t ,za�
 P�t�bulk. In other words, the survival probability be-
comes larger or smaller than the bulk value when the local
mean force gets larger or smaller than zero. Therefore, the
oscillations in the local density and the local mean force
modulate the diffusion of particles in regions close to the
walls, as shown in Fig. 6. We also show in Fig. 6 the layer

average force F̄��za� used here to obtain the diffusion con-
stants, as prescribed by Eq. �44�.

V. CONCLUSIONS

We have presented two fundamental results for the
molecular-dynamics evaluation of the parallel and transverse
diffusion constant in an anisotropic fluid. First, Eq. �11� or,
equivalently, Eq. �17� show that the transverse zz component
needs to be corrected by an extra factor, corresponding to the
survival probability in the jth sampling. This is equivalent to
divide by a factor Pj�t�=Nj�t� /Nj�0� not only the x and y
MSD components but also the z component, as discussed in
Sec. II. Equation �17� gives the connection with the prescrip-
tion of LHB �1� for the parallel and perpendicular compo-
nents.

Another fundamental result is the analytical solution of
the anisotropic Langevin equation for the MSD �Eqs. �34�
and �36�� with the correct long-time limit. Extracting the
force F�z� from the MD density profiles and the mean exit
time �MD�z� from the survival probability, we can use the
ansatz for �LD �Eq. �45�� into Eq. �36� to fit the MSD numeri-
cal MD data in order to predict the transverse self-diffusion
constant. So, our proposed method avoids the lengthy dual
numerical Langevin molecular-dynamics simulations to
match the survival probability as proposed by Liu et al. �1�
and used by others �10,11�.

Thus, we have constructed a direct and well-founded pre-
scription for the evaluation of the anisotropic self-diffusion
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constant from the molecular-dynamics mean-square dis-
placement data. We successfully applied it to a fluid system
under conditions where the local density shows marked os-
cillations.
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